登陆  
最新更新时间:2017/10/26 15:57:00
王世良

个人简介

王世良,博士,中南大学物理与电子学院 教授。主要从事纳米材料,纳米力学,表面与界面力学,微纳操纵技术等方面的研究。曾获全国优秀博士学位论文提名奖,湖南省自然科学优秀论文一等奖。主持包括3项国家自然科学基金项目和1项澳大利亚研究会探索项目(ARC Discovery Project)在内的十多项研究课题,并获澳大利亚昆士兰大学人才基金(UQ postdoc Fellowship,约180万人民币)资助。作为第一作者或通讯作者在Advanced Materials, Small, Carbon, Advanced Science, Applied Physics Letters, Applied Surface Science, Nanotechnology, Journal of Physical Chemical C, Scientific Report等国内外知名期刊上发表论文60多篇,研究结果两次被Nanotechnology选为封面图片,被推荐入选IOP-select论文集,被Materials Today选为Carbon Features。


研究经历

2015.10 - 今 教授,物理与电子学院,中南大学

2009.09 – 2015.09 副教授,物理与电子学院,中南大学

(2012.09 - 2013.09,2011.02 - 2012.02 访问学者,机械工程与采矿学院, 昆士兰大学 澳大利亚)

2003.10 - 2009.09 讲师,物理与电子学院, 中南大学

2001.07 - 2003.09 助教,物理与电子学院, 中南大学


联系邮箱:

shiliang@mail.csu.edu.cn; shiliang.wang@uq.edu.au


主持的代表性研究项目:

[1] 国家自然科学(面上)基金:一维纳米材料与基底之间吸附能的定量测量及其机理研究;No. 11674399;2017.1-2020.12

[2] 国家自然科学(面上)基金:金属Cu微/纳米晶须的气-液-固催化合成、力学和电学性能研究;No. 51074188;2011.1 - 2013.12

[3] 国家自然科学(青年)基金:难熔金属钨纳米线的可控制备、生长机理和力学性能研究;No. 50804057;2009.1 - 2011.12

[4] Australian Research Council (ARC) Discovery Projects: Developing innovative methodologies to understand nano-adhesion/friction; No. 160103190; 2016.1 - 2018.12 (澳大利亚研究会探索项目,33万澳币)

[5] UQ Postdoctoral Research Fellowships: Developing a simple method for characterising the mechanical properties of nanowhiskers; 2013.6 – 2015.5 (澳大利亚昆士兰大学人才基金,32万澳币)

[6] 中南大学教师基金:纳米线力学性能和力学行为的圈弯测试;No.2014JSJJ024;2015.1 - 2016.12

[7] 中国博士后特别基金: 石墨烯/铜壳/核纳米颗粒的合成及其应用基础研究;No. 2012T50703;2012.9 -2013.11

[8] 中国博士后基金(一等资助):多层石墨烯/铜壳/核纳米颗粒的合成、形成机理、抗氧化性能及其在导电墨水中的应用研究;No. 2011M500128; 2011.9-2013.11

[9] 湖南省优秀博士学位论文启动基金;金属Cu微/纳米晶须的气-液-固催化合成;No. 710520000; 2011.1-2012.12

[10] 湖南省自然科学基金:单晶W纳米线阵列的可控制备及其生长机理研究;No. 08JJ3110;2008.5-2010.4



讲授课程
_________________________________________________________________________________________

本科生课程:

1. 原子物理学

2. 量子力学

3. 热力学与统计物理学

4. 大学物理


研究生课程:

1. 纳米物理学

2. 现代分析与测试技术


科研方向
_________________________________________________________________________________________
§ 纳米材料和纳米结构

(1) 金属和金属氧化物纳米线的生长技术与机理研究;

(2) 金属-碳/核-壳纳米颗粒的气相合成技术与机理,及其在能源和隐身领域中的应用研究。

§ 纳米力学

(1) 采用基于光学显微镜纳米操纵的方法,研究单根一维纳米材料的力学性能和力学行为,

(2) 单根一维纳米材料在应力场和电子束辐照协同作用下的力学行为。

§ 表面与界面力学

(1) 采用基于光学显微镜纳米操纵的方法,对单个一维/二维纳米材料的表面作用力 (法向吸附力和侧向摩擦力) 进行定量测量,并探究其物理起源机制;

(2) 仿生表面的研制及其机理研究。


学术成果
_________________________________________________________________________________________

代表性论文(第一作者或通讯作者)

[1] Wang S, Shan Z, Huang H*, The mechanical properties of nanowires, Advanced Science, 2017 (In-press);

[2] Xie H, Mead J, Wang S*, Hang H. The effect of surface texture on the kinetic friction of a nanowire on a substrate. Scientific Reports, 2017, 7: 44907.

[3] Wang S, Wu Y, Huang H. Unique structure and surface-related elastic modulus of alumina nanobelts. Nanotechnology, 2016, 27(47): 475701.

[4] ROY A, Xie H, Wang S*, Huang. The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates. Applied Surface Science, 2016, 389: 797-801.

[5] Huang Q, Wang S*, Zhang Y, Yu B, Hou L, Su G*, Ma S, Zou J, Huang H*. Hollow Carbon Nanospheres with Extremely Small Size as Anode Material in Lithium-Ion Batteries with Outstanding Cycling Stability. The Journal of Physical Chemistry C 2016, 120(6): 3139-3144.

[6] Xie H, Wang S*, Huang H*. Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology 2016, 27(6): 065709.

[7] Yu B, Zhang Q, Hou L, Wang S*, Song M*, He Y, Huang H*, Zou J. Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers. Carbon 2016 96: 904 – 910.

[8] Wang S, Wu YW, Lin L, He Y, Huang H*. Fracture strain of SiC nanowires and direct evidence of electron-beam induced amorphisation in the strained nanowires. Small 2015, 11(14): 1672-1676.

[9] Hou L, Wang S*, Huang H*. A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method. Nanotechnology 2015, 26(16): 165702.

[10] Wang S, Hou L, Xie H, Huang H*. The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Applied Physics Letters 2015, 107(10): 103102.

[11] Xie H, Wang S*, Huang H. Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. Journal of Materials Research 2015, 30(11): 1852-1860.

[12] Liu J, Yu B, Qiankun Z, Hou L, Huang Q, Song C, Wang S*, Wu Y, He Y*, Zou J, Huang H*. Synthesis and magnetic properties of Fe3C-C core-shell nanoparticles. Nanotechnology 2015, 26(8): 085601.

[13] Yu B, Wang S*, Zhang Q, He Y*, Huang H*, Zou J. Ni3C-assisted growth of carbon nanofibres 300 °C by thermal CVD.Nanotechnology 2014. 25(32): 325602.

[14] Ma L, Yu B, Wang S*, Su G, Huang H*, Chen H, He Y*, Zou J. Controlled synthesis and optical properties of Cu/C core/shell nanoparticles. Journal of Nanoparticle Research 2014, 16(8): 2545.

[15] Wang S, He Y*, Huang H*, Zou J, Auchterlonie JG, Hou L, Huang B. An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. Nanotechnology 2013, 24(28): 285703 (IOP-select Paper, 主编推荐入选理由: Substantial advances or significant breakthroughs; A high degree of novelty; Significant impact on future research).

[16] Wang S, Chen G, Huang H*, Ma S, Xu H, He Y, Zou J. Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. Nanotechnology 2013, 24(50): 505705 (封面论文,2013.12.20).

[17] Wang C, He Y, Hou L, Wang S*, Liu X, Zhang Q, Peng C. Catalytic synthesis and growth mechanism of tungsten nanowire arrays on SiO2 substrates. Nano 2013, 8(1): 1350010.

[18] Hou L, Wang S*, Chen G, He Y, Xie Y. Mechanical properties of tungsten nanowhiskers characterized by nanoindentation.Transactions of Nonferrous Metals Society of China 2013, 23(8): 2323-2328.

[19] Wang S, Huang X, He Y, Huang H, Wu Y, Hou L, Liu X, Yang T, Zou J, Huang B. Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 2012, 50(6): 2119-2125 (在2012年6月是Carbon期刊下载次数最多的25篇论文之一;被Materials Today的主编选为Carbon期刊的标志性论文).

[20] Wang C, He Y, Wang S*, Zhang Q, Liu X. Low-temperature growth of tetragonal tungsten nanowire arrays on tungsten substrate using Ni solid catalysts. Journal of Crystal Growth 2012, 338(1): 214-217.

[21] Wang S, He Y*, Liu X, Huang H*, Zou J*, Song M, Huang B, Liu CT. Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD. Nanotechnology 2011, 22(40): 405704 (封面论文,2011.10.07).

[22] Wang S, He YH*, Liu XL, Zhang Q, Zou J*, Huang H, Song M, Huang BY, Liu CT, Du Y. Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process. Journal of Crystal Growth, 2011. 316(1): 137-144.

[23] Wang S, He YH*, Fang XS*, Zou J*, Wang Y, Huang H, Costa PMFJ, Song M, Huang B, Y., Liu CT, Liaw PK, Bando Y, Golberg D.Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition. Advanced Materials, 2009. 21(23): 2387-2392.

[24] Wang S, He YH*, Zou J*, Wang Y, Huang H. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide. Journal of Alloys and Compounds, 2009. 482(1-2): 61-66.

[25] Wang S, He YH*, Xu J, Jiang Y, Huang BY, Zou J*, Wang Y, Liu CT, Liaw PK. Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 oC. Journal of Materials Research, 2008. 23(1): 72-77.

[26] Wang S, He YH*, Zou J*, Wang Y, Huang H, Huang BY, Liu CT, Liaw PK. Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism. Nanotechnology, 2008. 19(34): 345604.

[27] Wang S, He YH*, Zou J*, Cao P, Jiang Y, Huang BY, Liu CT, Liaw PK. Synthesis of tungsten oxide tapered needles with nanotips. Journal of Crystal Growth, 2007. 303(2): 574-579.

[28] Wang S, He YH*, Zou J*, Jiang Y, Xu J, Huang BY, Liu CT, Liaw PK. Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850 oC. Journal of Crystal Growth, 2007. 306(2): 433-436.

[29] Wang S, He YH*, Huang BY, Zou J, Liu CT, Liaw PK. Formation and growth mechanism of tungsten oxide microtubules. Chemical Physics Letters, 2006. 427(4-6): 350-355.



学术奖励
_________________________________________________________________________________________
1. 2011年度湖南省自然科学优秀论文一等奖

2. 2010年度全国优秀博士学位论文提名奖

3. 2010年度湖南省优秀博士学位论文

4. 2009年度湖南省普通高校青年骨干教师培养对象