登陆  
最新更新时间:2016/12/8 1:09:00
周世琦
个人简介

周世琦,男,1969年生。1989年毕业于湖南文理学院食品工程专业大专班;于1997年毕业于华南理工大学制糖工程专业并获得工学博士学位。现任中南大学物理科学与技术学院教授、中南大学理论物理学科升华学者计划特聘教授;担任国际学术期刊The Open Chemical Physics Journal主编(Editor-in-Chief)、International Journal of Liquid State Sciences主编(Editor-in-Chief)、Advanced Science Letters 副编辑(associate editor)、Journal of Physics & Astronomy 编委等。主要研究方向为液体统计物理。本方向招收液体领域平衡与非平衡统计物理学与计算机模拟的硕士生与博士生、接受国内外访问学者、博士后研究人员,希望有兴趣者加盟。联系方式:0731-88642976、18908463096、chixiayzsq@yahoo.com、chixiayzsq@163.com。

主要学术贡献:

(i) 本人作为第一作者与通讯作者首创了应用自由能密度泛函普适性原理建立密度泛函近似的新途径,这是理论概念上的创新。文献上已经将之与液体理论领域由P. Tarazona、 N. W. Ashcroft、Y. Rosenfeld开创的权重密度近似、基本测度泛函近似并列引用; 相关论文发表时,受到审稿专家的高度评价:It represents an important advance in DFT theory and should help to stimulate further work, both in theory and application (该方法代表密度泛函理论的一个重要进展,应该在理论与应用两方面有助于刺激进一步的工作)。

(ii) 本人单独提出的‘萃取’体相流体径向分布函数发展密度泛函近似的新思路,在为纪念Rosenfeld教授提出基本测度泛函近似而在J. Phys.: Condens. Matter出版的关于液体密度泛函理论的专辑中,Cuesta教授撰文对这项工作的引用是与权重密度近似并列的;基本测度泛函近似的创始人Rosenfeld教授的高度评价也说明了其新颖性。

(iii) 本人作为第一作者与通讯作者推导出的体相流体高阶直接相关函数表达式,不仅为发展高阶摄动密度泛函近似奠定了理论基础;而且被德国学者用来成功地解释了二型超导体中三体相关效应(Phys. Rev. Lett. 97, 177004, 2006),这说明了该项工作的基础性,以及在多个领域内具有的普遍意义。

(iv) 本人单独提出了“将硬球流体密度泛函近似扩展到非硬球流体的普适性理论方案”。这是理论框架的创新,被同行专家在文献中评述为:Hence, the “universal theoretical way” puts the DFT for nonhard sphere fluid to a new stage ……(因而,该普适性理论方案将非硬球流体密度泛函近似推向了一个新的阶段……), ……and actually constitutes a highly promising and important category for constructing density functional approximation for any nonhard sphere fluids……(实际上构成了建立任意非硬球流体密度泛函近似的很有前景的、重要的一类方法……)。

(v) 本人单独提出的“偶合参数级数展开的热力学摄动框架”,比传统的Zwanzig(1954)的“高温级数展开热力学摄动框架”具有更高的收敛性,更容易准确地做到高阶截断;单独提出了非硬球摄动的新概念,并与所提出的“偶合参数级数展开的热力学摄动框架”结合,为解决液体理论领域困扰自诺贝尔物理学奖获得者van der Waals提出其著名的状态方程以来的所有液体状态理论的百年难题迈出了关键的一步。相关论文发表时得到审稿人高度评价:The paper is of general theoretical interest in the field of molecular theories of simple fluids. I recommend publishing it as it stands. (这篇论文在简单流体的分子理论领域具有普遍的理论影响, 我推荐按照论文所述发表);被同行专家在文献中评述为: This theory seems to provide better results than other perturbation theories and might constitute a new route to accurately obtain the thermodynamic properties of fluids so that perhaps it is the most significant advance in this field in the past years……(这一理论提供了比其它摄动理论更好的结果,可能构成了精确获取流体热力学特性的一条新的途径。因此,它可能是过去数年中在这个领域中最重大的进展)……. The Zhou theory is based on a novel approach within the field of perturbation theories and so it seems to open a new way to obtain accurately the thermodynamic properties of fluids,……(周的理论是基于摄动理论领域的一个新颖的方案,从而它似乎开辟一条准确地获得流体热力学性质的新的途径……);由于在热力学摄动理论领域与密度泛函理论领域所做工作,被<<Chemical Reviews>>(影响因子大于20)邀请撰写关于液体摄动理论的综述《Progress of perturbation approach in fluid and fluid-related theories》。

《大学物理(下)》

《热力学统计物理》

《电动力学》

《量子统计物理学》


科研方向
_________________________________________________________________________________________

以单一作者(占三分之二)或第一作者兼单一通讯作者(占三分之一)发表如下论文:

138 S. Zhou*, and G. Liu, Influences of depletion potential on vapor-liquid critical point metastability, AIP Advances 6, 045307(2016).
137 S. Zhou*, Change of electrostatic potential of mean force between two curved surfaces due to different salt composition, ion valence and size under certain ionic strength, J. Phys. Chem. Solids, 89, 53-61(2016).

136 S. Zhou*, Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity, Phys. Rev. E 92, 052317(2015).

135 S. Zhou*, Three-body potential amongst similarly or differently charged cylinder colloids immersed in a simple electrolyte solution, J. Stat. Mech.-Theory E Paper ID/ P11030(2015).

134 S. Zhou*, Q. Zhong, Approximate Analytic Expression of Surface Charge Density/Surface Potential Relationship for a Spherical Colloidal Particle Immersed in a General Electrolyte Solution, J. Disper. Sci. Technol. 36, 1742-1747(2015).

133 S. Zhou*, L. Yang, Performance Evaluation on Several Exchange-correlation Functional Ap-proximations in Calculations of Alkali-metals and IB Group Metals Pair Potentials, Open Physics Journal, 2,1-10(2015).

132 S. Zhou*, J. R. Solana, Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion, J. Chem. Phys.141, 244506(2014).

131
S. Zhou*, S. Lamperski, and M. Zydorczak, Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations, J. Chem. Phys. 141, 064701(2014).

130 S. Zhou*, Effects of discreteness of surface charges on the effective electrostatic interactions, J. Chem. Phys. 140, 234704(2014).

129 S. Zhou*, and J. R. Solana, Coupling parameter series expansion for fluid with square-well plus

repulsive-square-barrier potential, AIP Advances 3, 102103(2013).

128 S. Zhou*, Convergence and low temperature adaptability analysis of the high temperature series expansion of the free energy, J. Chem. Phys. 139, 124111(2013).

127 S. Zhou*, and J. R. Solana, The First Three Coecients in the High Temperature Series Expansion of Free Energy for Simple Potential Models with Hard-Sphere Cores and Continuous Tails, J. Phys. Chem. B 117, 9305(2013).

126 S. Zhou*, X. Liu, K. Yang, and H. Zou, Study of H2 physical adsorption in single-walled carbon nanotube array, AIP Advances 3, 082119(2013).

125 S. Zhou*, and J. R. Solana, Monte Carlo and theoretical calculations of the first four perturbation coefficients in the high temperature series expansion of the free energy for discrete and core-softened potential models, J. Chem. Phys. 138, 244115(2013).

124
S. Zhou*, Novel anomalies for like-charged attraction between curved surfaces and formulation of a hydrogen bonding style mechanism, AIP Advances 3, 032109 (2013).

123 S. Zhou*, Density Functional Analysis of Like-Charged Attraction between Two Similarly Charged Cylinder Polyelectrolytes, Langmuir 29, 12490-12501(2013).

122 S. Zhou*, Effects of nanoscale surface corrugation on surface-to-surface effective potential, Microfluid Nanofluid, 14, 859(2013).

121 S. Zhou*, and G. Zhang, Highly accurate and simple analytical approach to nonlinear Poisson– Boltzmann equation, Colloid Polym. Sci. 291, 879(2013).

120 S. Zhou*, and G. Zhang, Approximate analytic solution of the nonlinear Poisson–Boltzmann equation for spherical colloidal particles immersed in a general electrolyte solution, Colloid Polym. Sci. 290, 1511(2012).

119 S. Zhou*, and H. Wu, Analytical solutions of nonlinear Poisson–Boltzmann equation for colloidal particles immersed in a general electrolyte solution by homotopy perturbation technique, Colloid Polym. Sci. 290, 1165(2012).

118 S. Zhou*, Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy, AIP Advances 1, 040703(2011).

117 S. Zhou*, Non hard sphere thermodynamic perturbation theory over a wide range of temperatures, J. Stat. Mech.-Theory E Paper ID/P09001(2011).

116 S. Zhou*, Non-hard sphere thermodynamic perturbation theory,
J. Chem. Phys. 135, 074103(2011).

115 S. Zhou*, and G. Zhang, Approximate analytical expressions for electrical potential distribution and surface charge density/surface potential relationship for planar, cylindrical, and spherical entities immersed in a general electrolyte solution, Colloid Surface A 385, 28(2011).

114 S. Zhou*, Acute effect of trace component on capillary phase transition of n-alkanes, J. Stat. Mech.-Theory E Paper ID/P05023(2011).

113 S. Zhou*, Modulation of capillary condensation by trace component, AIP Advances 1, 022148(2011).

112 S. Zhou*, Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures, Commun. Theor. Phys. 55, 46(2011).

111 S. Zhou*, Going beyond the mean field approximation in classical density functional theory and application to one attractive core-softened model fluid, J. Stat. Mech.-Theory E Paper ID/P11039(2010).

110 S. Zhou*, Free Energy Density Functional for Adsorption of Fluids in Nanopores, Langmuir 26, 17037(2010).

109 S. Zhou*, A theoretical investigation on the honeycomb potential fluid, J. Chem. Phys. 133, 134107(2010).

108 S. Zhou*, Local Self-Consistent OrnsteinZernike Integral Equation Theory and Application to a Generalized Lennard-Jones Potential, J. Phys. Chem. B 114, 11525(2010).

107 S. Zhou*, New free energy density functional and application to core-softened fluid, J. Chem. Phys. 132, 194112(2010).

106 S. Zhou*, Augmented Kierlik-Rosinberg Fundamental Measure Functional and Extension of Fundamental Measure Functional to Inhomogeneous Non-hard Sphere Fluids, Commun. Theor. Phys. 54, 1023(2010).

105 S. Zhou*, and J. R. Solana, Low temperature behavior of thermodynamic perturbation theory, Phys. Chem. Chem. Phys. 11, 11528(2009).

104 S. Zhou*, and J. R. Solana, Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height, J. Chem. Phys. 131, 204503(2009).

103 S. Zhou*, and J. R. Solana, Comprehensive investigation about the second order term of thermodynamic perturbation expansion, J. Chem. Phys. 131, 134106(2009).

102 S. Zhou*, A new scheme for perturbation contribution in density functional theory and application to solvation force and critical fluctuations J. Chem. Phys. 131, 134702(2009).

101 S. Zhou*, How critical fluctuations influence adsorption properties of a van der Waals fluid onto a spherical colloidal particle, Theor. Chem. Acc. 124, 279(2009).

100 S. Zhou*, Theoretical Investigation about the Possible Consequence of Artificial Discontinuity in Pair Potential Function on Overall Phase Behavior, J. Phys. Chem. B 113, 8635(2009).

99 S. Zhou*, and J. R. Solana,
Progress in the Perturbation Approach in Fluid and Fluid-Related Theories, Chem. Rev. 109, 2829(2009).

98 S. Zhou*, How to make thermodynamic perturbation theory to be suitable for low temperature?

J. Chem. Phys. 130, 054103(2009).

97 S. Zhou*, Reformulation of liquid perturbation theory for low temperatures, Phys. Rev. E 79, 011126(2009).

96 S. Zhou*, Thermodynamics and phase behavior of a triangle-well model and density-dependent variety, J. Chem. Phys. 130, 014502(2009).

95 S. Zhou*, and A. Jamnik, Structural Properties of a Model System with Effective Interparticle Interaction Potential Applicable in Modeling of Complex Fluids, J. Phys. Chem. B 112, 13862(2008).

94 S. Zhou*, A. Lajovic, and A. Jamnik, Local structures of fluid with discrete spherical potential: Theory and grand canonical ensembleMonte Carlosimulation, J. Chem. Phys. 129, 124503(2008).

93 S. Zhou*, and J. R. Solana, Third-order thermodynamic perturbation theory for effective potentials that model complex fluids, Phys. Rev. E 78, 021503(2008).

92 S. Zhou*, Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid, Chinese Phys. B 17, 3812(2008).

91 S. Zhou*, H. Xu, and B. Zhang, Phase Transitions in Fluid State of Systems of Purely Repulsive Potentials, The Open Chem. Phys. J. 1, 42(2008).

90 S. Zhou*, Phase behaviour of purely repulsive systems: Violation of traditional van der Waals picture, Chinese Phys. Lett. 25, 2132(2008).

89 S. Zhou*, Fifth-order thermodynamic perturbation theory of uniform and nonuniform fluids, Phys. Rev. E 77, 041110(2008).

88 S. Zhou*, Phase behavior of density-dependent pair potentials, J. Chem. Phys. 128, 104511(2008).

87 S. Zhou*, Can the second virial coefficient be a predictor for the critical temperature?

Mol. Simulat. 33, 1187(2007).

86 S. Zhou*, Performance Evaluation of Third-Order Thermodynamic Perturbation Theory and Comparison with Existing Liquid State Theories, J. Phys. Chem. B 111, 10736(2007).

85 S. Zhou*, Solid phase thermodynamic perturbation theory: Test and application to multiple solid phases, J. Chem. Phys. 127, 084512(2007).

84 S. Zhou*, Density functional approximation for van der Waals fluids: based on hard sphere density functional approximation, Chinese Phys. 16, 1167(2007).

83 S. Zhou*, Accurate and local formulation for thermodynamic properties directly from integral equation method, Theor. Chem. Acc. 117, 555(2007).

82 S. Zhou*, A. Jamnik, E. Wolfe, and S. V. Buldyrev, Local Structure and Thermodynamics of a Core-Softened Potential Fluid: Theory and Simulation, Chem.Phys.Chem. 8, 138(2007).

81 S. Zhou*, Statistical mechanics approach to inhomogeneous van der Waals fluids, Mol. Simulat. 32, 1165(2006).

80 S. Zhou*, ‘Exact’ integral equation theory and local formulation for excess thermodynamic properties of hard spheres, Chem. Phys. 330, 478(2006).

79 S. Zhou*, Improvement on macroscopic compressibility approximation and beyond, J. Chem. Phys. 125, 144518(2006).

78 S. Zhou*, Thermodynamic perturbation theory in fluid statistical mechanics, Phys. Rev. E 74, 031119(2006).

77 S. Zhou*, and A. Jamnik, Is perturbation DFT approach applicable to purely repulsive fluids? Phys. Chem. Chem. Phys. 8, 4009(2006).

76 S. Zhou*, Formalism for calculation of polymer-solvent-mediated potential, Phys. Rev. E 74, 011402(2006).

75 S. Zhou, and A. Jamnik*, Structure of inhomogeneous Lennard-Jones fluid near the critical region and close to the vapor-liquid coexistence curve: Monte Carlo and density-functional theory studies, Phys. Rev. E 73, 011202(2006).

74 S. Zhou*, How to extend hard sphere density functional approximation to nonuniform nonhard sphere fluids: Applicable to both subcritical and supercritical temperature regions, J. Chem. Phys. 124, 144501(2006).

73 S. Zhou*, and A. Jamnik, Further Test of Third Order + Second-Order Perturbation DFT Approach: Hard Core Repulsive Yukawa Fluid Subjected to Diverse External Fields, J. Phys. Chem. B 110, 6924(2006).

72 S. Zhou*, Density Functional Approximation for Non-hard Sphere Fluids Subjected to External Fields, Int. J. Mod. Phys. B 20, 469(2006).

71 S. Zhou*, Polymer density functional theory approach based on scaling second-order direct correlation function, J. Colloid Interface Sci. 298, 31(2006).

70 S. Zhou*, Theoretical Investigation of Uniform and Non-uniform Penetrable Sphere Fluid, Commun. Theor. Phys. 46, 323(2006).

69 S. Zhou*, and A. Jamnik, Perturbation density functional theory for inhomogeneous fluids, Acta Chim. Slov. 53, 350(2006).

68 S. Zhou*, How to Extend the Bridge Density Functional Approximation to the Confined Non-hard Sphere Fluid, Chinese J. Chem. Phys. 19, 319(2006).

67 S. Zhou*, Rapidly convergent procedure to solve the density profile equation in the classical density functional theory, J. Comput. Chem. 27, 941(2006).

66 S. Zhou*, Extending simple weighted density approximation for hard sphere fluid to Lennard-Jones fluid (I): Test, Int. J. Mod. Phys. B 19, 4701(2005).

65 S. Zhou*, Extending the simple weighted density approximation for a hard-sphere fluid to a Lennard–Jones fluid II. Application, J. Colloid Interface Sci. 290, 364(2005).

64 S. Zhou*, Isostructural solid–solid transitions in binary asymmetrical hard sphere system: Based on solvent-mediated potential, J. Colloid Interface Sci. 288, 308(2005).

63 S. Zhou*, and A. Jamnik, Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems, J. Chem. Phys. 123, 124708(2005).

62 S. Zhou*, Investigation about suitability of hard core attractive Yukawa potential as a model potential for short-range attractive interactions in colloidal dispersions, Colloid Surface A 262, 187(2005).

61 S. Zhou*, Thermodynamic properties and phase equilibrium study of Lennard-Jones model and application to real molecules, Chinese J. Chem. Phys.18, 487(2005).

60 S. Zhou*, and H. Sun, Sedimentation Equilibrium of Colloidal Suspensions in a Planar Pore Based on Density Functional Theory and the Hard-Core Attractive Yukawa Model, J. Phys. Chem. B 109, 6397(2005).

59 S. Zhou*, A Global Investigation about Hard Core Attractive Yukawa Approximation and Adhesive Hard Sphere Approximation for Structure of Colloidal Dispersion Systems, Commun. Theor. Phys. 43, 567(2005).

58 S. Zhou*, and A. Jamnik, Analysis of the validity of perturbation density functional theory: Based on extensive simulation for simple fluid at supercritical and subcritical temperature under various external potentials, J. Chem. Phys. 122, 064503(2005).

57 S. Zhou*, Influence of Solvent-Solvent and Solute-Solvent Interaction Property on Solvent-Mediated Potential, Commun. Theor. Phys. 44, 365(2005).

56 S. Zhou*, Quantitative Description of Potential of Mean Force between Macroparticles in Fluid with Attactive Forces, Commun. Theor. Phys. 43, 735(2005).

55 S. Zhou*, Further investigation about Lagrangian theorem-based density functional approximation: test by non-uniform polymer melt, Chem. Phys. 310, 129(2005).

54 S. Zhou*, Local Solvent Density Augmentation around a Solute in Supercritical SolventBath: 1. A Mechanism Explanation and a New Phenomenon, J. Phys. Chem. B 109, 7522(2005).

53 S. Zhou*, New Theoretical Approach for Calculation of Potential of Mean Force, Chinese J. Chem. Phys.18, 679(2005).

52 S. Zhou*, Semi-Analytical Hard Sphere Reference System Theory for Solvent-Mediated Potential (III): Test and Application to System with General Interaction Potentials, Chem. Phys. Lett. 399, 315(2004).

51 S. Zhou*, Universal Calculational Recipe for the Calculation of Solvent-Mediated Potential: (II) Based on Density Functional Theory, Chem. Phys. Lett. 399, 323(2004).

50 S. Zhou*, Universal calculational recipe for solvent-mediated potential: based on a combination of integral equation theory and density functional theory, Chem. Phys. Lett. 392, 110(2004).

49 S. Zhou*, Application of Lagrangian theorem-based density-functional approximation free of adjustable parameters to nonhard-sphere fluid, J. Chem. Phys. 121, 895(2004).

48 S. Zhou*, Solid-Liquid Phase Transition of the Hard-Core Attractive Yukawa System and Its Colloidal Implication, J. Phys. Chem. B 108, 8447(2004).

47 S. Zhou*, Solid–liquid transition of charge-stabilized colloidal dispersions: a single-component structure-function approach, Can. J. Phys. 82, 357(2004).

46 S. Zhou*, X. Zhang, Thermodynamic Perturbation Theory for Solid-Liquid Phase Transition of Lennard-Jones Model, Commun. Theor. Phys. 42, 285(2004).

45 S. Zhou*, X. Zhang, X. Xiang, and H. Xiang, Integral Equation Method for the Determination of the Depletion Potential between Two Colloidal Particles, Chinese J. Chem. Phys. 17, 38(2004).

44 S. Zhou*, Formally Exact Truncated Nonuniform Excess Helmholtz Free Energy Density Functional: Test and Application, J. Phys. Chem. B 108, 3017(2004).

43 S. Zhou*, Perturbative density functional approximation in the view of weighted density concept and beyond, Chem. Phys. Lett. 385, 208(2004).

42 S. Zhou*, Perturbation density functional theory for nonuniform fluid mixture based on Lagrangian theorem, Chem. Phys. 297, 171(2004).

41 S. Zhou*, Lagrangian theorem-based density functional approach free of adjustable parameter, Phys. Lett. A 319, 279(2003).

40 S. Zhou*, Partitioned density functional approach for Lennard-Jones fluid, Phys. Rev. E 68, 061201(2003).

39 S. Zhou*, Thermodynamic properties of hard sphere fluid under confined condition: based on bridge density functional, Chinese Phys. Lett. 20, 2107(2003).

38 S. Zhou*, Mean Spherical Approximation-Based Perturbation Density Functional Theory, Commun. Theor. Phys. 40, 721(2003).

37 S. Zhou*, and X. Zhang, Freezing of Charge-Stabilized Colloidal Dispersions, J. Phys. Chem. B 107, 5294(2003).

36 S. Zhou*, Employing functional counterpart of Lagrangian theorem to improve on density functional theory for density profile of non-uniform fluids, Chem. Phys. 289, 309(2003).

35 S. Zhou*, H. Chen, and X. Zhang, A new uniform phase bridge functional: test and its application to non-uniform phase fluid, Commun. Theor. Phys. 39, 231(2003).

34 S. Zhou*, H. Chen, S. Ling, X. Xiang, and X. Zhang, Statistical mechanics approach for uniform and non-uniform fluid with hard core and interaction tail, Commun. Theor. Phys. 39, 331(2003).

33 S. Zhou*, Structure of a Confined Square-Well Fluid, J. Phys. Chem .B 107, 3585 (2003).

32 S. Zhou*, Formally `exact' first-orderTaylorseries expansion for density functional theory, New J. Phys. 4, 36(2002).

31 S. Zhou*, Functional Counterpart of Lagrangian theorem and Perturbative Density Functional Theory: A forgotten Idea, Chinese Phys. Lett. 19, 1322(2002).

30 S. Zhou*, and X. Zhang, A New Bridge Functional and Its Application to Density Functional Approach for Non-uniform Fluid, Acta Phys-Chim Sin. 18, 699(2002).

29 S. Zhou*, Perturbation Density Functional Theory for Density Profile of A Non-uniform and Uniform Hard Core Attractive Yukawa Model Fluid, J. Phys. Chem. B 106, 7674(2002).

28 S. Zhou*, and X. Zhang, Universality principle and the development of classical density functional theory, Chinese Phys. 11, 1051(2002).

27 S. Zhou*, Specification of density functional approximation by radial distribution function of bulk fluid, Commun. Theor. Phys. 37, 543(2002).

26 S. Zhou*, Density Functional Approach Based on Numerically Obtained Bridge Functional, Commun. Theor. Phys. 38, 355(2002).

25 S. Zhou*, and X. Zhang, High-order perturbative density functional theory for non-uniform long-range interaction potential fluids near surfaces, J. Colloid Interface Sci. 242, 152(2001).

24 S. Zhou*, Density functional theory based on the universality principle and third-order expansion approximation for adhesive hard-sphere fluid near surfaces, J. Phys. Chem. B 105, 10360(2001).

23 H. Chen*, X. K. Lu, and S. Zhou, et al. Fabrication and Characteristics of AIN nanowires, Mod. Phys. Lett. B 15, 1455(2001).

22 S. Zhou*, A method to incorporate the radial distribution function of bulk fluid into the density functional approximation, J. Chem. Phys. 115, 2212(2001).

21 S. Zhou*, X. Sun, H. Chen, and H. Li, A mixed order density functional theory for adhesive hard sphere fluid confined between two hard walls, J. Chem. Phys. 115, 1115(2001).

20 S. Zhou*, and X. Zhang, Microscopic approach for the site distribution and thermodynamic properties of a single-component polymer subjected to an external field, Phys. Rev. E 64, 011112(2001).

19 S. Zhou*, Reformulation of density functional theory for generation of the nonuniform density distribution, Phys. Rev. E 63, 061206(2001).

18 S. Zhou*, Transformation from Rogers-Young (RY) approximation to density functional approach for non-uniform fluids: Numerical recipe, Phys. Rev. E 63, 051203(2001).

17 S. Zhou*, A non-perturbative density functional analysis for non-uniform Lennard-Jones fluid, J. Chem. Phys. 113, 8717(2000).

16 S. Zhou*, Inhomogeneous mixture system: A density functional formalism based on the universality of the free energy density functional, J. Chem. Phys. 113, 8719(2000).

15 S. Zhou*, and E. Ruckenstein, A density functional theory based on the universality of the free energy density functional, J. Chem. Phys. 112, 8079(2000).

14 S. Zhou*, and E. Ruckenstein, A new density functional approach to nonuniform Lennard-Jones fluids, J. Chem. Phys. 112, 5242(2000).

13 S. Zhou*, and E. Ruckenstein, High order direct correlation functions of uniform fluids and their application to the high order perturbative density functional theory, Phys. Rev. E 61, 2704(2000).

12 S. Zhou*, A simple weighted-density functional method: Test and its application to hard sphere fluid in spherical cavity, J. Chem. Phys. 110, 2140(1999).

11 S. Zhou*, and S. Guo, Molecular thermodynamic model for reverse micelles system and protein extraction -1. Molecular thermodynamic model for reverse micelles system, Acta Chim Sinica 57, 437(1999).

10 S. Zhou*, An approximate analytic expression for the surface charge density/surface potential relationship for a spherical colloidal particle, J. Colloid Interface Sci. 208, 347(1998).

9 周世琦, 反胶束萃取蛋白质的热力学研究, 博士学位论文, 华南理工大学(1997)。

8 周世琦*, 反胶束内表面电荷密度/表面电势的近似解析式,《化学物理学报》, Vol.12, 49(1999)。

7 周世琦, 郭祀远*, 李琳, 蔡妙颜, 反胶束稳定性的热力学分析, Journal of South China University of Technology (Natural Science), Vol. 25, 27(1997)。

6 周世琦, 郭祀远*, 反胶束萃取蛋白质中静电相互作用能的研究,《化学物理学报》,Vol. 10, 466(1997)。

5 周世琦, 郭祀远*, 食品加工与营养,《食品工业科技》, No.97, 64(1996)。

4 周世琦, 郭祀远*, 大米陈化机理与改质方的探讨,《粮食储藏》, Vol. 24, 28(1995)。

3 周世琦, 郭祀远*, 食品的冷冻干燥,《湖南食品与发酵》,Vol. 20-21,46(1996)。

2周世琦*, 环状糊精及在食品中的应用,《湖南食品与发酵》, Vol. 15, 31(1995)。

1周世琦*, 膜技术及其在食品工业中的应用,《杭州食品科技》, Vol. 35, 24(1994)。